Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating
نویسندگان
چکیده
We present high-resolution hydrodynamical simulations of isolated dwarf galaxies including self-gravity, non-equilibrium cooling and chemistry, interstellar radiation fields (ISRF) and shielding, star formation, and stellar feedback. This includes spatially and temporally varying photoelectric (PE) heating, photoionization, resolved supernova (SN) blast waves and metal enrichment. A new flexible method to sample the stellar initial mass function allows us to follow the contribution to the ISRF, the metal output and the SN delay times of individual massive stars. We find that SNe play the dominant role in regulating the global star formation rate, shaping the multiphase interstellar medium (ISM) and driving galactic outflows. Outflow rates (with mass-loading factors of a few) and hot gas fractions of the ISM increase with the number of SNe exploding in low-density environments where radiative energy losses are low. While PE heating alone can suppress star formation as efficiently as SNe alone can do, it is unable to drive outflows and reproduce the multiphase ISM that emerges naturally whenever SNe are included. We discuss the potential origins for the discrepancy between our results and another recent study that claimed that PE heating dominates over SNe. In the absence of SNe and photoionization (mechanisms to disperse dense clouds), the impact of PE heating is highly overestimated owing to the (unrealistic) proximity of dense gas to the radiation sources. This leads to a substantial boost of the infrared continuum emission from the UV-irradiated dust and a far-infrared line-to-continuum ratio too low compared to observations.
منابع مشابه
Interstellar Media in the Magellanic Clouds and other Local Group Dwarf Galaxies
I review the properties of the interstellar medium in the Magellanic Clouds and Local Group dwarf galaxies. The more massive, star-forming galaxies show a complex, multi-phase ISM full of shells and holes ranging from very cold phases (a few 10 K) to extremely hot gas (> 10 K). In environments with high UV radiation fields the formation of molecular gas is suppressed, while in dwarfs with low U...
متن کاملExtragalactic magnetic fields
Recent advances in observational techniques reveal the widespread existence of magnetic fields in the Universe, and produce much firmer estimates of magnetic field strengths in interstellar and intergalactic space. Ordered, microgauss-level fields are common in spiral galaxy disks and halos, and appear to be a common property of the intra-cluster medium of clusters of galaces, indeed well beyon...
متن کاملEffects of massive star formation on the ISM of dwarf galaxies 1 Suzanne
We are studying star formation effects on the properties of the ISM in low metallicity environments using mid-infrared (MIR) and far-infrared (FIR) observations of starbursting dwarf galaxies taken with the Infrared Space Observatory (ISO) and the Kuiper Airborne Observatory (KAO). Effects of the hard pervasive radiation field on the gas and dust due to the dust-poor environments are apparent i...
متن کاملemission and star formation in late - type galaxies . II A model ⋆
We study the relationship between gas cooling via the [C II] (λ = 158 µm) line emission and dust cooling via the far-IR continuum emission on the global scale of a galaxy in normal (i.e. non-AGN dominated and non-starburst) late-type systems. It is known that the luminosity ratio of total gas and dust cooling, LC II/LFIR , shows a non-linear behaviour with the equivalent width of the Hα (λ = 65...
متن کاملTemperature Variations and Non-photoionization Heating in the Warm Ionized Medium of Galaxies
Optical emission lines observed in the gaseous halo of the Milky Way and other galaxies suggest the existence of a supplemental heat source—in addition to photoionization—that increases the electron temperature in regions of low density. Such heat sources are in fact predicted to exit in the interstellar medium. For example, both the dissipation of turbulence through ion-neutral dampening and p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017